Salt Spring Island Regional Trail: Final Section of the Salish Sea Trail Network

Feasibility Study Report

October 15, 2025

Acknowledgements

The Capital Regional District (CRD) would like to acknowledge and thank all project participants for their contributions throughout the planning process.

Funding for a portion of this study was made possible through a grant from the Canadian Federal Active Transportation Fund to Island Pathways, a non-profit society whose mission is to improve active transportation on Salt Spring Island.

Capital Regional District

Stephen Henderson *Sr Manager of Real Estate, Southern Gulf Islands Electoral Area*Dan Ovington *Manager, Parks and Recreation*Genevieve Tokgoz *Engineer*Stuart Walsh *Parks Operations Supervisor*Kevin Webber *Parks Planner (Chair and Project Oversight Lead)*

Islands Trust

Chris Hutton *Regional Planning Manager*Chris Buchan *Island Planner*

BC Ministry of Transportation and Transit

Shawn Haley *Operations Manager, Vancouver Island District*Owen Page *Area Manager, Roads*Mahesh Tripathi *District Engineer, Vancouver Island and Gulf Islands*

Project Team*

Gavin Davidson *GJD Planning + Design*Tim Davidson *GJD Planning + Design*Colin Stein *GJD Planning + Design*Roy Symons *ISL Engineering*

Community Partners

Island Pathways Salish Sea Trail Network Working Group

*This report has been prepared by the CRD and GJD Planning + Design with support from ISL Engineering for the benefit of the CRD and others. The information and data contained in this report represents the author's best professional judgement considering the knowledge, information, and data available at the time of preparation. This is a living document, subject to change and updates based on changing conditions and circumstances. GJD Planning + Design denies any liability to other parties that may obtain access to this report for any injury, loss or damage suffered by such parties arising from their use of, or reliance upon this report without the express written permission of GJD Planning + Design and the CRD.

Table of Contents

Acknowledgements	2
Executive Summary	5
Introduction	6
Project Background	7
Provincial Context	7
Local and Regional Context	8
Community Partner Context	8
Feasibility Study Overview	9
Study Area	9
Scope and Limitations	11
Methods	12
Data	12
Field Visits	13
Benchmark Review	15
Preliminary Design Overview	16
2-Way Multi-Use Paths	16
Protected Bike Lanes	17
Shared Local Streets	18
Shared Bi-directional Pedestrian and Bicycle Shoulder	19
Pedestrian and Bicycle Crossing Infrastructure	20
Amenities, Furnishings and Landscaping	21
Prioritization and Estimated Cost	21
Segment Prioritization Analysis	21
Estimated Costs:	23
Discussion	24
Next Steps	25
Bibliography	27

Appendix	A: Typical Road Cross Section Designs	29
Data-Dr	iven Right-of-Way Assessments	29
Appendix	B: Design Standards by Segment	31
Appendix	C: Detailed Segment Evaluation Framework	36
Projecte	ed Demand	36
Connect	ivity/Access/Safety	38
Commu	nity Support	40
Costs ar	nd Conflicts	41
Appendix	D: Proposed Shared Local Street Alignment Through Segments J & K	43
	E: Trail Design Costing for a 3.0 m Paved Path	
	F: Funding and Partnership Considerations	
• •	G: Key Implementation Tasks	
	olementation Tasks	
Table	S	
Table 1	Salt Spring Island Regional Active Transportation Route Segments	11
Table 2	All Accounts Summary Scores	22
Table 3	Route Segment Prioritization for Implementation	24
Figure	25	
Figure 1	The Salt Spring Island Regional Trail Study Area and Route Segments	10
Figure 2	A typical cross section along Lower Ganges Road	14
Figure 3	Typical cross-section in Ganges Village	14
Figure 4	Bicycle operating space	15
Figure 5	A 2 m wide 2-way path within a constrained ROW	17
Figure 6	Protected Bike Lanes and Sidewalks on a roadway in an urban setting	18
Figure 7	A Shared Local Street (Rural Design Guide)	19
Figure 8	A Pedestrian and Bicycle Shared Shoulder	19
Figure 9	$\label{lem:constructed} \textbf{A Pedestrian and Bicycle Shared Shoulder recently constructed on Bowen Island}$	20
Figure 10	Pedestrian Activated Rapid Response Crossing Signal	20
Figure 11	Markings for a Bicycle and Pedestrian Crossing	21
Figure 12:	Plan view of a portion of Fulford-Ganges Road near Garry Oaks Winery	29
Figure 13:	Plan view of a portion of the route through Ganges Village	30

Executive Summary

The Capital Regional District (CRD) has committed to developing a network of regional trails across the Southern Gulf Islands to link major transportation hubs with key community destinations. The Gulf Islands Regional Trails Plan (CRD, 2018) outlines a conceptual regional trail route on Mayne, Salt Spring, Pender, Galiano, and Saturna islands. As outlined in the plan, the trails are to accommodate both cyclists and pedestrians, be situated within public road rights-of-way whenever possible, be separated from vehicle traffic where feasible, and be developed in phases.

The CRD engaged GJD Planning + Design to undertake a feasibility study for the Salt Spring Island Regional Trail (SSIRT)—a proposed 21 km active transportation corridor connecting Fulford Harbour, Ganges Village, and Vesuvius Bay. The SSIRT overlaps with a portion of the Salish Sea Trail Network—a 186 km conceptual active transportation loop envisioned by the local non-profit Island Pathways and supported by the Salish Sea Trail Network Working Group, a coalition of community members and elected officials. The feasibility study evaluated the technical, financial and strategic feasibility of implementing the SSIRT and includes proposed cross sections, illustrates potential alignment, and identifies opportunities and constraints along the corridor.

To address construction cost challenges—initially estimated at \$102 million—and to expedite implementation, lower-cost options were explored, including incorporating on-road segments along traffic-calmed side streets, which reduced the estimated construction costs to \$63 million. Segments requiring significant construction or property acquisition pose higher costs and complexity, whereas in some areas, existing public roadside pathways could be formalized into a regional trail with relatively few interventions. In particular, a number of segments between Ganges Village and Vesuvius Bay offer the potential for low-cost, early implementation and are prioritized for initial construction.

To support successful implementation of the SSIRT, the following actions are recommended:

- 1. **Route surveying** to confirm existing road right-of-way widths and site-specific conditions;
- 2. **Development of conceptual drawings** based on survey findings to refine trail alignments and address identified constraints:
- 3. **Engagement with community members and users, First Nations, local and provincial governments, and key stakeholders** to gather input, build consensus, and ensure the trail reflects community values and priorities; and
- 4. **Preparation of detailed design drawings and cost estimates** to support funding applications, permitting, and phased construction.

The SSIRT represents a significant opportunity to enhance sustainable, active transportation opportunities across Salt Spring, fostering healthier communities and stronger regional connections.

Introduction

On Salt Spring Island, the Capital Regional District (CRD) conducts its business on the territories of the SENĆOŦEN and Hul'q'umi'num' speaking peoples. These include the Penálaxeth' (Penelakut), Quw'utsun (Cowichan), Lyackson, Stz'uminus (Chemainus), Snuneymuxw, STÁUTW (Tsawout), WJOŁEŁP (Tsartlip), BOKEĆEN (Pauquachin), WSIKEM (Tseycum), MÁLEXEŁ (Malahat), and Halalt Nations, all of whom have a longstanding relationship with the land and waters from time immemorial that continues to this day.

In the 2008 Salt Spring Island Local Trust Area Official Community Plan¹, observed that Salt Spring Island is "a place of extraordinary beauty, great environmental significance, and rare biological diversity. …We know that it is more important to leave a legacy than to leave an impact."

Salt Spring Island is known for its rural character, vibrant arts community, organic farms and diverse natural landscapes. It has a population of under 12,000 permanent residents, along with a significant seasonal influx of visitors that places additional demand on local infrastructure. Despite its popularity and tourism appeal, Salt Spring has limited active transportation facilities, resulting in a high dependency on the use of private automobiles for the movement of people and goods.

Over the last 40 years, there has been increased demand and coordinated efforts from residents and community groups to support the construction of an active transportation network on the island. In 2024, CRD Regional Parks formally joined the effort, working with Island Pathways and other key community members to establish a preliminary design for a ferry-to-village-to-ferry active transportation route that would:

- reduce the personal and collective carbon footprints of Salt Spring residents and visitors;
- provide individual and population health benefits;
- enable more accessible and equitable transportation options to those for whom the use of a motor vehicle is unnecessary or impossible;
- provide a greater variety of transportation options—particularly those that are low impact—to support visitor and tourism revenue growth for the local economy; and
- reduce the noise, traffic congestion and safety risks associated with motor vehicle traffic.

The following Feasibility Study Report (the Study) represents the first steps towards the creation of 'shovel-ready' projects on Salt Spring, linking Fulford Harbour, Ganges Village, and Vesuvius Bay.

¹ See https://islandstrust.bc.ca/island-planning/salt-spring/bylaws/#community_plans

Project Background

For decades, there has been interest in establishing safe and accessible active transportation facilities on Salt Spring Island—specifically, a connected network of paths to support walking and cycling between key origins and destinations across the island. Over this time, a number of CRD reports, including the Pedestrian and Cycling Master Plan: Salt Spring Island Edition (CRD 2013) and the Gulf Islands Regional Trails Plan (CRD 2018), have identified this network as a regional priority.

In 2022, a groundswell of support from local community members led to the establishment of the Salish Sea Trail Network Working Group (SSTNWG)², a coalition of community members and elected officials dedicated to developing a public walking and cycling route that would:

- 1. connect existing regional trails in the CRD and Cowichan Valley Regional District (CVRD);
- 2. utilize the BC Ferries routes that connect Vancouver Island to Salt Spring Island;
- 3. a new walking and cycling route across Salt Spring Island, linking Fulford Harbour, Ganges, and Vesuvius Bay; and
- 4. together, these segments would form the circular 186 km Salish Sea Trail Network, with Salt Spring Island representing the final incomplete section.

Island Pathways, a local non-profit society founded in 1988, secured funding through the Federal Active Transportation Fund to support the development of a formal project plan for the SSIRT. In early 2024, the CRD assumed the role of project sponsor, and CRD Regional Parks contracted GJD Planning + Design to complete the Study.

Future phases of the SSIRT will require continued collaboration across multiple levels of government and community organizations. Together, these organizations will help guide the construction, operation, and maintenance of the SSIRT, ensuring it reflects regional priorities and supports provincial climate and transportation goals.

Provincial Context

In 2019, as part of its CleanBC policy initiative, the Province of BC introduced *Move Commute Connect* and the CleanBC Roadmap to 2030, the province's first active transportation strategy, intended to help more people use active transportation more often and is part of a broader plan to lower climate-changing emissions by 40% by 2030.

² Established in 2022 and chaired by the previous Member of the Legislative Assembly for Saanich North and the Islands. This working group includes representatives of the federal Member of Parliament for Saanich-Gulf Islands, the BC Ministry of Transportation and Transit, CRD, BC Ferries - Salt Spring Island Advisory Committee, Islands Trust, Island Pathways, and Transition Salt Spring. Following the October 19, 2024 election, the working group has reconvened regular meetings.

Today, the Province is working on the Clean Transportation Action Plan (CTAP), a commitment under CleanBC to support the reduction of greenhouse gas emissions by 27-32% in the transportation sector, specifically over the next five years. CTAP will recommend actions in foundational areas of transportation, including reduction of vehicle kilometres travelled and a shift to more efficient modes.

As public roads on Salt Spring Island fall under provincial jurisdiction, the Ministry of Transportation and Transit (MoTT) is responsible for their management and maintenance. MoTT will be responsible for reviewing and approving detailed design drawings and a licence agreement for the trail's development and operation within road rights-of-way. BC Ferries will be an essential partner for trail sections near ferry terminals, where spatial constraints and overlapping land uses will require additional planning, engagement, and interagency coordination to ensure safe and integrated active transportation connections.

Local and Regional Context

Over the past decade, several CRD divisions—including Regional Planning, Regional Parks, and the Salt Spring Island Electoral Area (SSIEA)—along with the Islands Trust and the Salt Spring Island Local Community Commission (SSILCC), have supported active and sustainable transportation planning and implementation on Salt Spring Island. This includes the development of regional strategies and policies and the construction of trails to enhance walking and cycling networks.

The CRD will play a central role in advancing planning and implementation for most segments of the SSIRT and the SSILLC will play a key role in representing community interests, guiding land use policy, and leading complementary infrastructure projects such as sidewalk and bike lane improvements in Ganges Village.

Community Partner Context

Island Pathways has been a long-time advocate for active transportation on Salt Spring Island and is expected to remain a key partner in the planning and development of the SSIRT and community outreach. Their work brings together residents and government representatives to improve walking and cycling infrastructure across the island. In 2007, they formed the Partners Creating Pathways Committee, which includes members from MoTT, the SSIEA, the Salt Spring Trail & Nature Club, and previously, the Parks and Recreation and Transportation Commissions. This committee focuses on creating safe and accessible walking and cycling routes, supported by fundraising, education, and safety programs. A key achievement is the construction of a 2.2 km trail along Lower Ganges Road, linking major destinations like Ganges Village, Portlock Park, the Fritz movie theatre, and the Salt Spring Island Golf Club. This trail makes up nearly 10% of the planned regional route from Fulford Harbour to Vesuvius Bay and is currently maintained by the SSIEA.

Feasibility Study Overview

The Study provides a foundational assessment of the proposed 21 km route, examining physical constraints, identifying preliminary planning needs and suitable designs, and estimating planning-level construction costs.

Technical guidance and support for the Study, including strategic oversight, information and data provision, and review of draft reports from the consulting team, was provided by a Technical Advisory Committee (TAC), made up of representatives from participating organizations and agencies (see Acknowledgements). Island Pathways has also continued to participate in an advisory role throughout the project, including coordination and collaboration with other organizations and agencies involved in the SSTNWG.

The Study is informed by a range of provincial, regional, and local plans and strategies that collectively guide active transportation planning, policy development and capital investment. These foundational documents include:

- Pedestrian and Cycling Master Plan: Salt Spring Island Edition (CRD, 2013)
- Gulf Islands Regional Trails Plan (CRD, 2018)
- Salt Spring Island Parks and Recreation Strategic Plan (CRD, 2019)
- Move Commute Connect, BC's Active Transportation Strategy (MoTT, 2019)
- BC Active Transportation Design Guide (MoTT, 2019)
- Salt Spring Island Official Community Plan Bylaw No. 434, 2008 (Islands Trust, 2022)
- Salt Spring Island Cycling Safety Review—Final Report (MoTT, 2023)
- Salt Spring Island Active Transportation Network Plan (CRD, 2023)
- Regional Parks and Trails Strategic Plan 2022-2032 (CRD, 2023)
- Salt Spring Island Local Community Commission Strategic Plan 2024–27 (CRD, 2024)

Study Area

The Study area is situated on Salt Spring Island in British Columbia and spans approximately 21 km from Fulford Harbour, through Ganges Village, to Vesuvius Bay. It falls within the jurisdiction of local, regional, provincial, federal, and Indigenous governments.

The route follows the conceptual SSIRT route that was identified within the Gulf Islands Regional Trails Plan (CRD, 2018). For the purposes of this Study, the route has been separated into 14 segments to allow for detailed analysis, cost estimates and potential phased construction over time. Figure 1 provides a visual representation of the study area and Table 1 provides an overview of each of the segments.

Figure 1: The Salt Spring Island Regional Trail Study Area and Route Segments

Table 1: Salt Spring Island Regional Active Transportation Route Segments

Seg. Code	Segment Name	Location	From	То	Length (m)
A1	Fulford Ferry Terminal	Fulford Ganges Road	Fulford Ferry Terminal	Beaver Point Road	302
A2	Fulford Ferry Link	Fulford Ganges Road	Beaver Point Road	Isabella Point Road	1,022
В	Fulford Valley	Fulford Ganges Road	Isabella Point Road	Burgoyne Bay Road	3,493
С	Mountainside	Fulford Ganges Road	Burgoyne Bay Road	Kitchen Road	3,221
D	Cusheon Lake- Cranberry	Fulford Ganges Road	Kitchen Road	Saltspring Way	2,742
E	Ganges Hill	Fulford Ganges Road	Saltspring Way	Seaview Avenue	2,987
F	Ganges Village Core	Fulford Ganges/Lower Road	Seaview Avenue	Upper Ganges Road	805
G	Upper Ganges Village	Lower Ganges Road	Upper Ganges Road	Blain Road	795
Н	Blain-Sharp	Lower Ganges Road	Blain Road	Sharp Road	836
I	Sharp-Central	Lower Ganges Road	Sharp Road	Vesuvius Bay Road	1,432
J	Portlock-Mobrae DETOUR	Vesuvius Bay Road, Mobrae Ave, Woodland Dr, Mobrae Ave	Lower Ganges Road	Mobrae Avenue (west)	1,923
K	Vesuvius Curves ALT	Mobrae Ave, Bradley Rd, Elizabeth Dr, Chu-An Dr	Mobrae Avenue (west)	Chu An Drive	1,563
L1	Vesuvius Ferry Link	Vesuvius Bay Road	Chu An Drive	Bayview Road	612
L2	Vesuvius Ferry Terminal	Vesuvius Bay Road	Bayview Road	Vesuvius Terminal	340

Scope and Limitations

The scope of the Study was to provide preliminary planning and designs for the proposed SSIRT, including a planning-level construction cost estimate and ranking each segment of the route for phased implementation.

The alignment and facility design were informed by available road right-of-way (ROW), physical and jurisdictional constraints, surrounding land use, preliminary stakeholder input, and relevant data and design guidance from various agencies.

This report does not include comprehensive public engagement and therefore does not fully represent the views of all affected parties. The outcome is a report that is intended to support the CRD and partner agencies in advancing engagement, conceptual and detailed designs, fundraising and other steps required for implementation.

Cost estimates identified in the Study are provided by ISL Engineering and are based on real projects and tender bids and/or engineers' estimates for detailed design. The source of cost estimates reflects similar projects and does not include any land acquisition costs. The estimates provided represent a Class D estimate (±50%) described by the Engineers and Geoscientists British Columbia as a preliminary estimate that, due to little or no site information, indicates the approximate magnitude of cost of the proposed project and may be used in developing long-term capital plans and preliminary discussions of proposed capital projects.

Methods

This section outlines the data, research and analysis techniques used to evaluate the feasibility of the SSIRT. This information was used to support the overall design and cost estimates of the project.

Data

Data to support the Study came from various sources, including local, regional, provincial and federal datasets, as well as through input from community partners. Much of the data is Geographic Information System (GIS) based and can be combined and layered to allow a spatial assessment of physical opportunities and constraints. Data collected and assessed as part of this study was used to prioritize segments for implementation and highlight costs and barriers to implementation. Key data sources include:

- **Mapping and Spatial Data** property boundaries from Parcel Map BC³, elevation contours (1 m intervals) from LiDAR BC, and road ROW details from the BC Digital Road Atlas and CRD aerial imagery, including alignment, intersections, lanes, shoulders, and setbacks.
- **Infrastructure** above- and below-ground utilities (hydro poles, streetlights, and water lines) from local and regional government sources and planned or active infrastructure projects based on input from local, regional, and provincial agencies.
- **Transportation** transit stops from BC Transit and Google Street View, formal and informal walking and cycling routes from Google Maps, OpenStreetMap, Bikemap, and Beeline, and

³ Property lines provided from Parcel Map BC are not entirely accurate. Typically, a land-based survey is required to accurately pinpoint the precise location of property lines. Land-based surveys are recommended as part of further conceptual and/or detailed designs to accurately assess private property impacts.

motor vehicle collisions involving pedestrians, cyclists, and other active transportation users from the Insurance Corporation of BC (ICBC).

- **Community Amenities** locations of grocery stores, parks, and public rest stops from Google Maps and OpenStreetMap.
- **Demographic Data** population and commuting data from the 2016 and 2021 Canada Census.

GIS data layers and images were used to show the location of each dataset and offer varying degrees of accuracy. Aerial photographs allow measurements to within +/- 20 cm, while the location of property lines, hydro poles, and bus stops vary considerably in their accuracy, with their estimated locations being anywhere from 0 to 20 m from their actual location.

The resulting preliminary design is appropriate for this stage in the planning process and to support initial planning-level cost estimates. However, more refined conceptual designs, land surveys, and detailed designs will ultimately be needed to confirm recommended designs and more precise cost estimates for each segment of the proposed SSIRT.

Appendix A provides an example of how base-level data sources were used in this assessment to understand existing road ROW conditions and possible cross-section design.

Field Visits

Two field visits were undertaken and provided valuable insight into the physical characteristics, usage, and infrastructure along the proposed SSIRT. The first field visit included cycling the full 21 km corridor, documenting existing conditions and exploring alternative alignment options. The second field visit was used to validate desktop analysis, refine potential alignment options and improve understanding of physical constraints and alignment feasibility.

Key Findings:

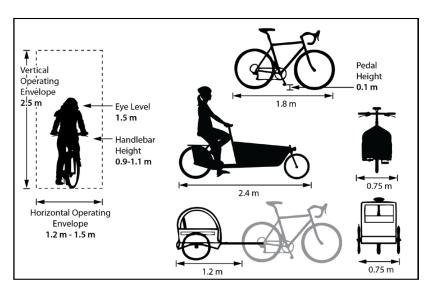
- Infrastructure Gaps: The corridor lacks consistent pedestrian and cycling infrastructure, especially outside Ganges Village.
- Safety Concerns: Narrow shoulders and high-speed rural segments pose risks to vulnerable road users. Dedicated infrastructure is limited and inconsistent.
- Design Complexity: Varying terrain, roadside features, and property constraints will influence alignment feasibility.
- Community Use: The route is actively used by cyclists and pedestrians despite infrastructure limitations.
- Planning Insight: Combining fieldwork with GIS and LiDAR analysis provided a strong foundation for identifying opportunities and constraints along the corridor, informing the proposed SSIRT.

• Existing Road Conditions: Outside of Ganges Village the roadway generally involves a single general-purpose travel lane in each direction and narrow shoulders (Figure 2). Speed limits vary from 60 to 80 km/h. Within Ganges Village the roadway varies somewhat; speed limits drop to 50 to 30 km/h, and there are more left-hand turn bays, intermittent curb and gutters, curbside parking, signed and marked pedestrian crossings, and bike lanes (Figure 3).

Figure 2: A typical cross section along Lower Ganges Road, just west of Sharp Road/Wildwood Crescent (Credit Google Street View)

Figure 3: Typical cross-section in Ganges Village (Lower Ganges Road, north of Hereford Avenue/Purvis Lane) (Credit Google Street View)

Benchmark Review


This benchmark review summarizes relevant standards, guidelines and best practices that have informed the development of design options for the SSIRT.

Active Transportation User Considerations

In accordance with the British Columbia Motor Vehicle Act, a "vulnerable road user" is defined as individuals who are at increased risk in traffic environments, including pedestrians, cyclists, motorcyclists, persons using mobility aids or personal transportation devices, and those on or in animal-drawn vehicles or animals themselves.

Users on the SSIRT are envisioned to include pedestrians, human-powered cyclists and micro-mobility devices that are compatible with bicycle infrastructure in terms of size, weight and speed. Micro-mobility devices are constantly evolving; new guidance is helping define which ones are suitable for shared-use paths with pedestrians and cyclists. The design of the SSIRT is based upon the dimensions, speed and weight of a bicycle, as described in provincial and national transportation design guidance (Figure 4).

Figure 4: Bicycle operating space (TAC Geometric Design Guide, 2017)

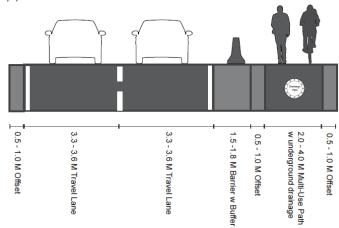
Other characteristics and considerations for micro-mobility devices include:

- a weight of less than 40 kilograms;
- a motor that is not capable of propelling the vehicle at a speed greater than 32 km/hr on level ground;
- a continuous power output that, in total, does not exceed 500 watts; and
- that the vehicle must not be equipped with a generator, alternator or similar device powered by a combustion engine.

Design Guidelines

The design for the SSIRT is predicated upon guidance within the British Columbia Active Transportation Design Guide (BCATDG), which offers the most up-to-date, applicable and comprehensive guidance available in Canada for each of the facility types recommended as part of this route. The following section summarizes the recommended design guidance and facility types applied across different segments of the SSIRT, in accordance with the BCATDG and consistent with the design standards used for the CRD's recently constructed Phase 1 of the Mayne Island Regional Trail.

Preliminary Design Overview


The design of the proposed SSIRT varies to reflect Salt Spring Island's diverse landscapes and community contexts. Recommended facility types are outlined below, and while not always suitable for all ages and abilities, they are intended to serve a broad range of users while balancing the challenge of constructing active transportation facilities within constrained right-of-way and with a limited budget. The following section provides detailed descriptions of each recommended facility type, while Appendix B presents an overview of their proposed locations along the route.

2-Way Multi-Use Paths

The BCATDG offers guidance concerning the width of off-street pathways along or adjacent to provincial roadways. It states that the desirable width is 4.0 metres and that the constrained width of a multiuse pathway is 3.0 metres. The absolute minimum width of a multi-use pathway is 2.0 metres, based on the operating envelope of a single bicycle user (1.2 metres) and the operating envelope of one person walking (0.75 metres). However, this minimum width of 2.0 metres should only be considered in exceptional circumstances, including in undeveloped rural contexts with very low volumes of people walking and/or cycling and if there are significant constraints such as property or natural features, including significant trees, ditches, or slopes (BCATDG, 2019, p. 268).

In most areas, the proposed SSIRT will involve a 2-way multi-use path on either side of the road and will feature a 2.0 to 3.0 metre wide, unpaved, two-way multi-use path, physically separated or protected from motor vehicle traffic. A 2.0 m wide path within constrained circumstances is illustrated in Figure 5. Construction costs in constrained circumstances are typically more expensive to build and maintain because of the cost for physical barriers between trail users and the roadway and drainage systems under the pathway. In some constrained areas, existing roadside ditches within the ROW may need to be undergrounded, adding to both construction and maintenance costs.

Figure 5: A 2 m wide 2-way path within a constrained ROW

As outlined above, a 2.0 m width should only be used in exceptional circumstances, such as a rural setting with low anticipated user volumes and physical constraints (e.g., property boundaries or natural features). These conditions are present in a number of areas throughout the proposed route. As the SSIRT expands to connect key destinations and ferry terminals, user volumes are expected to grow. To future-proof the trail and enhance safety and comfort, it is strongly recommended that a minimum width of 3.0 m be provided wherever feasible, especially near activity centres, on steeper terrain, and in areas with higher anticipated use. Given the island's hilly topography and evolving demand, ongoing monitoring will be essential to assess whether narrower segments (2.0 m) remain appropriate over time.

Protected Bike Lanes

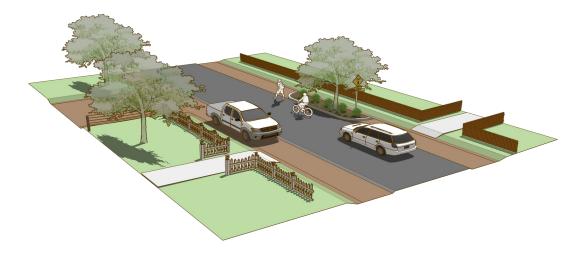
Through Ganges Village, where the land use is more urbanized, the facilities will include segregated, unidirectional cycling facilities on either side of the road that are physically protected from motor vehicle traffic. Exceptions will occur where the road ROW is constrained, leading to some instances where users may not be physically protected from motor vehicle traffic. In such circumstances it is recommended that speed limits be appropriate for side-by-side operation of motor vehicles and active transportation users. Fortunately, speed limits tend to be between 30 and 50 km/h in Ganges Village, allowing cyclists, pedestrians and other active transportation users to be more comfortable travelling in close proximity to motor vehicle traffic.

Protected bike lanes have been installed on roadways in urban settings within smaller communities throughout southern British Columbia. This cross section is intended to accommodate a complete set of active transportation features, including sidewalks, a furnishing zone for street furniture and landscaping, protected bike lanes, a buffer zone for physical separation between cyclists and vehicles, and one travel lane in each direction. To accommodate additional elements such as left-turn lanes or curbside parking, the design can be adjusted while still maintaining safety and functionality for all roadway users. These adjustments may include, for example, removing or narrowing the furnishing

zone, reducing the buffer width between vehicles and bike lanes from 1.0 m to 0.6 m, and narrowing left-turn bays to 3.0 m.

In areas where the road ROW is less than 20 m, further space savings can be achieved by providing a sidewalk on only one side of the street. This approach ensures that the core elements of a safe and inclusive street design are preserved, even in constrained conditions. See Figure 6 for further details concerning the design of protected bike lanes within the context of a multi-modal ROW.

Figure 6: Protected Bike Lanes and Sidewalks on a roadway in an urban setting


Shared Local Streets

The Gulf Islands Regional Trails Plan envisioned this route following Vesuvius Bay Road. However, due to the steep terrain and narrow road widths on Vesuvius Bay Road between Chu an Drive and the eastern access to Mobrae Avenue (corresponding to Segments J and K in this report), the facility is recommended to be routed onto local side streets as an interim measure to advance construction of this route. On these streets, subject to MoTT approval, it's recommended that signage and pavement markings be used to reduce the maximum speed limit from 50 to 30 km/h, allowing pedestrians, cyclists and micro-mobility users to more safely share the roadway with motor vehicle traffic. This approach is similar to sections of the CRD's Lochside Regional Trail, of which portions are located within Lochside Drive, a shared-use local street. An example of a Shared Local Street is illustrated below in Figure 7, and Appendix D shows the proposed local road alignment through Segments J and K.

Any traffic calming measure incorporated into the project must conform to MoTT's construction specifications. Current specifications do not allow for narrowed lanes or speed bumps, so alternative

methods to calm traffic may be needed. However, given the low traffic volumes and the function of these roadways as local residential streets, it is anticipated that signage and pavement markings will be adequate to calm traffic and allow motorists, cyclists and pedestrians to share these roads in safety and comfort.

Shared Bi-directional Pedestrian and Bicycle Shoulder

Within approximately 250 metres of each ferry terminal (Segments A1 and L2), pedestrian and bicycle shared shoulders, as illustrated in Figure 8 and 9, are recommended to address physical constraints and improve access to terminals, shops, and services. This approach balances the need for safe, accessible infrastructure within the spatial constraints found within Segments A1 and L2.

In these areas the road ROW can be as narrow as 11.1 metres. Approximately 4.5 metres can be allocated for a shared bi-directional pedestrian and bicycle shoulder. Due to space limitations, it will not be possible to include grade separation or physical protection between the roadway and trail users. To enhance safety, it is recommended the posted speed limit be reduced from 50 km/h to 30 km/h through these areas.

Figure 8: A Pedestrian and Bicycle Shared Shoulder – Segments A1 and L2

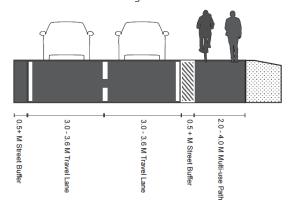
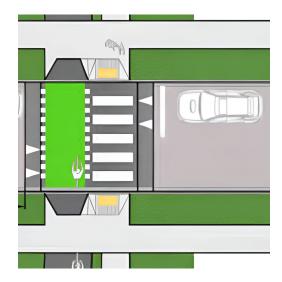


Figure 9: A Pedestrian and Bicycle Shared Shoulder recently constructed on Bowen Island (Credit Google Street View)

Pedestrian and Bicycle Crossing Infrastructure


Pedestrian and bicycle crossing infrastructure is recommended in areas where the facility crosses a roadway that accommodates high speed or high volumes of motor vehicle traffic. In all instances, pedestrian and bicycle crossings will be designed to safely accommodate vulnerable road users in accordance with crossing guidance within the BCATDG and taking into account, motor vehicle speeds, volumes, and roadway geometrics, including, but not limited to, sight lines, grades and speed limits.

While such facilities may vary in their design, depending on local circumstances, bicycle and pedestrian activated signals are becoming more common on roadways under provincial jurisdiction. A similar type of facility is located in Ganges Village and includes rapid response flashing beacons and associated pavement markings (Figure 10). Current standards would require these elements to include separated bike and pedestrian crossings with visual and physical markings as shown in Figure 11.

Figure 10: Pedestrian Activated Rapid Response Crossing Signal at Rainbow and Lower Ganges Roads (Credit Google Street View)

Figure 11: Markings for a Bicycle and Pedestrian Crossing (BCATDG, 2019)

Amenities, Furnishings and Landscaping

Amenities, furnishings and landscaping will be appropriate to the level of development, ranging from minimal adaptation in rural settings to continually higher levels of accommodation in suburban and urban settings. Space has been set aside within the preliminary design to accommodate these features and further details will be left for consideration in future stages of the design process. This approach allows those responsible for the conceptual and detailed designs to utilize the available space to provide an attractive, safe and beautiful setting for all users of the road ROW.

There are already conceptual designs for active transportation facilities that have been proposed for this route within Ganges Village by Watt Consulting in their Salt Spring Island Active Transportation Network Plan (CRD, 2023).

Prioritization and Estimated Cost

This section presents a data-driven approach to prioritizing the implementation of 14 proposed trail segments for the SSIRT. It outlines the evaluation framework, scoring methodology, and resulting rankings to guide strategic decision-making and investment.

Segment Prioritization Analysis

To support strategic decision-making, an evaluation framework was developed in consultation with the Technical Advisory Committee. The evaluation framework was used to rank the 14 route segments for phased implementation (Appendix C). This evidence-based approach considered 10 measures across the following four key criteria areas:

- 1. **Projected Demand** Identifies where improvements are most needed, based on population density, current walking/cycling rates, and published CRD priorities.
- 2. **Connectivity, Access & Safety** Assesses how well segments connect to transit and other active transportation routes and considers safety factors like collision history and steep grades.
- 3. **Support** Evaluates alignment with provincial infrastructure grant criteria.
- 4. **Cost & Conflicts** Estimates construction costs and identifies potential property conflicts.

Those route segments that score highest on these accounts are ranked as highest priorities for implementation, with a possible total of 65 points. The highest score was 43.6 and the lowest was 30.0. Table 2 provides an overall summary of the scores for each segment and Appendix C provides a detailed breakdown of the scoring for each of the 10 measures.

Table 2: All Accounts Summary Scores

Seg. Code	Seg. Name	Projected Demand Total /15 Max	Connectivity Total /30 Max	Support Total /05 Max	Costs & Conflicts Total /15 Max	Final Score Total /65 Max	Implementation Priority
A1	Fulford Ferry Terminal	6	18.5	5	7.9	37.4	7
A2	Fulford Ferry Link	4	19.0	5	6.6	34.6	11
В	Fulford Valley	3	18.0	5	8.1	34.1	12
C	Mountainside	3	16.5	5	7.3	31.8	13
D	Cusheon Lake- Cranberry	3	20.5	5	7.6	36.1	10
Е	Ganges Hill	4	19.0	5	2.0	30.0	14
F	Ganges Village Core	10	16.0	5	6.3	37.3	8
G	Upper Ganges Village	10	19.0	5	6.3	40.3	4
Н	Blain-Sharp	14.5	10.0	5	12.7	42.2	2
1	Sharp-Central	12	12.0	5	10.0	39.0	6
J	Portlock-Mobrae DETOUR	10	20.0	3	10.6	43.6	1
K	Vesuvius Curves ALT	10	14.5	0	14.6	39.1	5
L1	Vesuvius Ferry Link	10	13.0	5	8.5	36.5	9
L2	Vesuvius Ferry Terminal	10	17.0	5	9.5	41.5	3

Segment J from Portlock Park to Mobrae West is the highest priority for implementation and represents a desirable option for short-term implementation due to its favourable cost, user demand and connectivity. The top six segments, including J, H, L2, G and K, each fall within the area between Ganges Village and Vesuvius Bay. The only segment between Vesuvius and Ganges Village that is a lower priority is Segment L1, Vesuvius Ferry Link, between Chu An Drive and Bayview Road, which is ranked ninth. It is recommended that the prioritization be reviewed and updated over time to reflect changing context and priorities.

Estimated Costs:

The total estimated construction cost for a 2.0- to 3.0-metre-wide unpaved path is approximately \$63 million.

Initially this study considered a 3.0-metre-wide paved path across all segments with an estimated total construction cost of \$101 million (Appendix E). To reduce construction costs, a less expensive option was explored by considering surface treatment and refining the assessment within high-cost areas—specifically those requiring drainage ditch relocation, hydro pole relocation and retaining wall construction.

The following table summarizes the prioritization, distance and estimated total capital construction costs for each of the 14 route segments and does not include any land acquisition costs. Construction costs are based on Class D estimates provided by ISL Engineering. Due to the limited information available at this stage and in accordance with Class D estimates, a 50% contingency has been applied to all capital cost estimates included in this report. The subsequent conceptual and detailed design phases offer opportunities to refine the cost estimates.

Table 3: Route Segment Prioritization for Implementation

		COST PER KILOMETRE			
SEG. CODE	SEG. NAME	Length (m)	Est. Cost ⁴	Cost/km Avg.	
A1	Fulford Ferry Terminal	302	\$1,360,000	\$4,500,000	
A2	Fulford Ferry Link	1,022	\$4,180,000	\$4,090,000	
В	Fulford Valley	3,493	\$6,480,000	\$1,850,000	
C	Mountainside	3,221	\$7,600,000	\$2,360,000	
D	Cusheon Lake-Cranberry	2,742	\$7,710,000	\$2,810,000	
E	Ganges Hill	2,987	\$18,970,000	\$6,350,000	
F	Ganges Village Core	805	\$3,930,000	\$4,880,000	
G	Upper Ganges Village	795	\$4,370,000	\$5,490,000	
Н	Blain-Sharp	836	\$1,220,000	\$1,460,000	
1	Sharp-Central	1,432	\$1,820,000	\$1,270,000	
J	Portlock-Mobrae DETOUR	1,923	\$1,740,000	\$900,000	
K	Vesuvius Curves ALT	1,563	\$390,000	\$240,000	
L1	Vesuvius Ferry Link	612	\$2,120,000	\$3,460,000	
L2	Vesuvius Ferry Terminal	340	\$1,180,000	\$3,460,000	
		Total:	\$63,070,000	\$3,080,000	

Discussion

Based on the findings of this report, the highest priority for implementation is Segment J, with an estimated capital cost of \$1,750,000. The next highest priority is for an upgrade to the existing trail within Segment H that will expand the width of that trail from 1.5 m to a 2 to 3 m wide, unpaved trail.

Feedback from the TAC and SSTNWG suggests that the Salt Spring community is likely to react negatively if Segment H is prioritized for upgrades while other gaps along the route continue to languish without any improvements. It's therefore recommended that CRD move forward on construction of Segment J. Some planning funds should be retained to monitor usage and related conflicts within Segment H. If the construction of Segment J does not lead to an increase in demand for active travel on Segment H, then it is recommended that L2 be considered as the next priority for implementation following the implementation of Segment J.

While the standard design width for the trail is 2 metres, consideration should be given to widening the path to 3 metres in locations where space and budget permit. Prioritizing a 3-metre width where feasible can enhance user safety and comfort and is likely to increase usage. To make the facility

⁴ Cost estimates are provided by ISL Engineering and are based on real projects and tender bids and/or engineers estimates for detailed design. The source of cost estimates reflect similar projects and do not include any land acquisition costs.

attractive to a wide range of users, it's recommended that the speed limit be dropped to 30 km/h wherever pedestrian and/or cycling facilities are not physically protected from motor vehicle traffic.

The proposed trail has strong potential to attract significant use, as it would connect to a larger regional loop that is already well-established and popular with both residents and visitors. Ongoing growth in travel to Salt Spring Island—currently estimated at 3.5% annually (BC Ferry Services Inc., 2024)—further underscores the need for expanded active transportation options.

While access to capital funding remains highly competitive, the most feasible path forward lies in a coordinated approach between the CRD, MoTT, and the SSILCC. By combining efforts to widen shoulders and construct the trail concurrently, it is possible to deliver both a dedicated multi-use path and enhanced roadway shoulders. This integrated solution would support a wider range of users, improve safety and comfort, and may be achievable even in constrained segments where a reduced trail width is necessary.

Next Steps

This section outlines potential next steps and actions to support the design, funding, construction, and ongoing operations and maintenance of the SSIRT. There are several significant steps that must be taken to progress this project to construction and operation. Any further work should be supported by a formalized consultation process to document all First Nations, public and stakeholder input for incorporation in the detailed design.

To advance planning and implementation, it is recommended that the CRD and partners undertake the following initiatives. To support efficiency and maintain project momentum, some of these components may proceed concurrently:

- Business Case Development Prepare a value proposition assessing benefits, costs, and risks to build public support and secure investment.
- Public Engagement Formal engagement to generate interest and inform government policy and funding decisions.
- Funding Strategy Further work will be necessary to identify a clear pathway forward, including seeking Board and corporate support, to better understand project priorities in relation to funding options and available grant programs. Grant funding is available to leverage CRD budgets for planning, design and construction. See Appendix F for funding and partnership opportunities.
- Implementation Plan Development Formalize a Memorandum of Understanding among local, provincial, and federal agencies to clarify roles, responsibilities, and timelines for advancing the SSIRT. See Appendix G for key implementation tasks to be undertaken for each phase of the project.

- Conceptual & Detailed Design Complete surveys and designs, with stakeholder input, to refine infrastructure and cost estimates. This process should also explore efficiencies, such as sourcing trail material locally, batching surveys/designs, and optimizing tendering strategies.
- Operations & Management Agreement Establish pre-construction agreements outlining responsibilities, resource needs and funding sources for long-term infrastructure management.
- Permitting & Land Acquisition Consult regulatory agencies, senior governments, BC Ferries, and utility owners through review and permitting processes, and secure required land or easements from private owners⁵.

⁵ Note that the cost estimates provided in this report do not include any funds toward property acquisition.

Bibliography

British Columbia Ferry Services Inc. (2024). *Annual Report to British Columbia Ferries Commissioner, Year Ended March 31, 2024.* https://www.bcferries.com/web_image/h20/h45/9007350710302.pdf

British Columbia Ministry of Transportation and Infrastructure. (2019). *BC Supplement to TAC Geometric Design Guide* (3rd ed.). https://www2.gov.bc.ca/assets/gov/driving-and-transportation/transportation-infrastructure/engineering-standards-and-guidelines/highway-design-and-survey/tac/tac-2019-supplement/bctac2019-bcsupplementtotac.pdf?forcedownload=true

British Columbia Ministry of Transportation and Infrastructure. (2019). *British Columbia Active Transportation Design Guide*. https://www2.gov.bc.ca/assets/gov/driving-and-transportation/funding-engagement-permits/grants-funding/cycling-infrastructure-funding/active-transportation-guide/2019-06-14_bcatdg_compiled_digital.pdf

British Columbia Ministry of Transportation and Infrastructure (2019) *Move Commute Connect, BC's Active Transportation Strategy.* https://www2.gov.bc.ca/assets/gov/driving-and-transportation/funding-engagement-permits/grants-funding/cycling-infrastructure-funding/activetransportationstrategy_report_web.pdf

British Columbia Ministry of Transportation and Infrastructure (2023) *Salt Spring Island Cycling Safety Review—Final Report.* https://www2.gov.bc.ca/assets/gov/driving-and-transportation/reports-and-reference/reports-and-studies/vancouver-island-south-coast/2023-04-21_salt_spring_island_cycling_safety_review.pdf

Capital Regional District (2013) *Pedestrian and Cycling Master Plan: Salt Spring Island Edition*. https://www.crd.ca/media/file/pcmp-ssi-edition?sfvrsn=17a598c9_0

Capital Regional District (2019) *Salt Spring Island Parks and Recreation Strategic Plan.* https://www.crd.ca/media/file/ssi-parks-and-recreation-strategic-plan

Capital Regional District (2023) Regional Parks and Trails Strategic Plan 2022-2032. https://www.crd.ca/media/file/crd-regional-parks-and-trails-strategic-plan-2022-2032-reduced

Capital Regional District (2024) *Salt Spring Island Local Community Commission Strategic Plan 2024–27.* https://www.crd.ca/media/file/salt-spring-island-lcc-strategic-plan-2024-2027

Capital Regional District: Regional Parks (2018) *Gulf Islands Regional Trails Plan.* https://www.crd.bc.ca/project/gulf-islands-regional-trail-project

Capital Regional District, WATT Consulting Group, & Ahne Studio (CRD 2023). <u>Salt Spring Island Active</u> <u>Transportation Network Plan</u>

CleanBC (2021) *Roadmap to 2030.* https://www2.gov.bc.ca/assets/gov/environment/climate-change/action/cleanbc/cleanbc roadmap 2030.pdf

Depew, E., & Smith, J. W. (2020, October). *Long-Distance Cycling Routes: Economic Impacts, Best Practices, and Marketing Strategies*. Utah State University.

https://outdoorrecreation.wi.gov/Documents/Research%20Library%20Page%20files/US%20-%20Economic%20Impacts/Long-distance_cycling_routes_2020.pdf

Garrard, J., Rissel, C., & Bauman, A. (2012). Health benefits of cycling. City cycling, 31, 31-56.

Goodman A, Sahlqvist S, Ogilvie D; iConnect Consortium. *New walking and cycling routes and increased physical activity: one- and 2-year findings from the UK iConnect Study.* Am J Public Health. 2014 Sep;104(9):e38-46. doi: 10.2105/AJPH.2014.302059. Epub 2014 Jul 17. PMID: 25033133; PMCID: PMC4151955.

Saunders, L. E., Green, J. M., Petticrew, M. P., & Steinbach, R. (2013). What are the health benefits of active travel? A systematic review of trials and cohort studie. *PLoS ONE*, 8(8). e69912.

Reynolds, Winters, Ries, Gouge (2010) National Collaborating Centre for Environmental Health Active Transportation in Urban Areas: Exploring Health Benefits and Risks.https://ncceh.ca/sites/default/files/Active Transportation in Urban Areas June 2010 0.pdf

Schmitt, A., & Wilson, K. (2014, July 21). *Study: People Living Near Biking and Walking Paths Get More Exercise — Streetsblog USA*. Streetsblog USA. Retrieved March 18, 2025, from https://usa.streetsblog.org/2014/07/21/study-people-living-near-biking-and-walking-paths-get-more-exercise

StatsCAN Plus. (2023, August 17). More Canadians getting active outside - Statistics Canada. Retrieved December 21, 2024, from https://www.statcan.gc.ca/o1/en/plus/4316-more-canadians-getting-active-outside

Transportation Association of Canada. (2017). Geometric Design Guide for Canadian Roads.

U.S. Department of Transportation, Federal Highway Administration. (2016). *Small town and Rural Design Guide*.

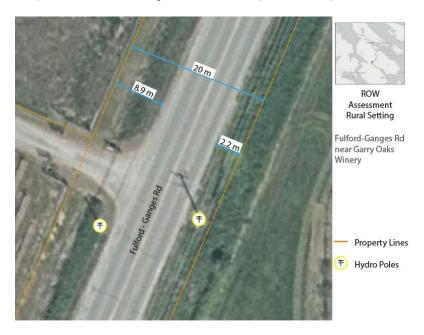
https://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/small_towns/fhwahep170 24 lq.pdf

World Health Organization. (n.d.). A Physically active life through everyday transport with a special focus on children and older people and examples and approaches from Europe. World Health Organization Regional Office for Europe.

https://iris.who.int/bitstream/handle/10665/107405/E75662.pdf?sequence=1&isAllowed=y

Appendix A: Typical Road Cross Section Designs

Data-Driven Right-of-Way Assessments

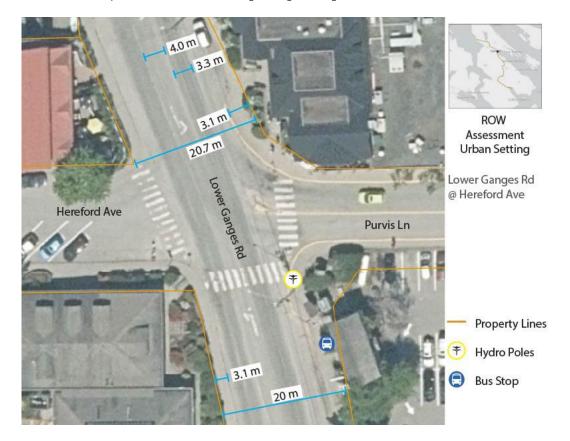

The following images provide an example of how base-level data sources were used in this assessment to identify appropriate alignments and active transportation facilities. This approach was taken for the full SSIRT and was used to evaluate the proposed corridor and inform field validation. Key roadside features are shown, including property lines, bus stops, streetlights, hydro poles, the road ROW, and approximate distances from the road edge to property boundaries. The examples provided below focus on the development of a rural and urban cross section.

Rural Areas Cross Section

The following lateral dimensions are recommended for a rural cross section:

- 2-way multi-use path—3.0 m (2.0 m pathway and 0.5 m shoulder on each side to accommodate required setbacks),
- Space to accommodate the ditch and above-ground utilities—6.2 m (approximately 2 to 4 m on each side),
- Road shoulders—3.6 m (1.8 m on each side),
- Travel lanes—6.6 to 7.2 m (3.3 to 3.6 m lanes in each direction),
- Total ROW width—normally 20 m, but varies.

Figure 12: Plan view of a portion of Fulford-Ganges Road near Garry Oaks Winery

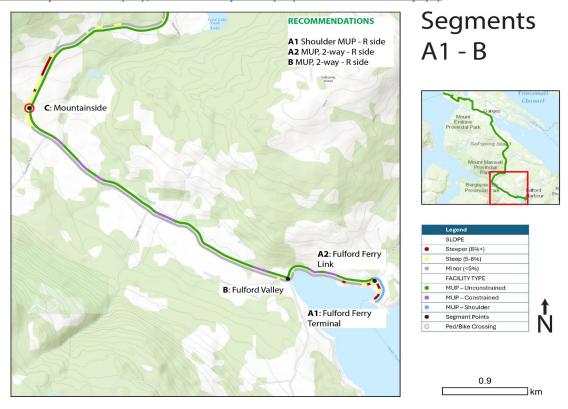

Urban Areas Cross Section

The following lateral dimensions are recommended for an urban cross section:

- Sidewalks of 2.5 to 3.0 m
- Furnishing zones of between 0 and 1 m
- Protected Bike Lanes of 2.1 to 2.5 m
- Traffic Lanes and Turn Lanes of 3.0 to 3.3 m
- Physical protection between traffic lanes and bike lanes 0.6 to 1.0 m
- Total ROW width—normally 20 m, but varies

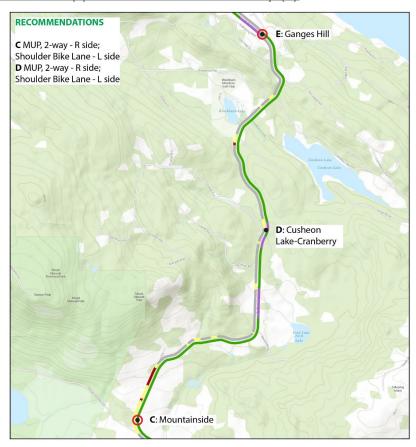
Where left-hand turn bays are not required, that space can be reallocated to furnishing zones to accommodate street furniture and landscaping and increased width for physical protection between motor vehicles and cycling facilities.

Figure 13: Plan view of a portion of the route through Ganges Village



Appendix B: Design Standards by Segment

The following maps illustrate the proposed route alignment, based on detailed assessments and 1:1,000-scale plan view drawings prepared for the full trail corridor.

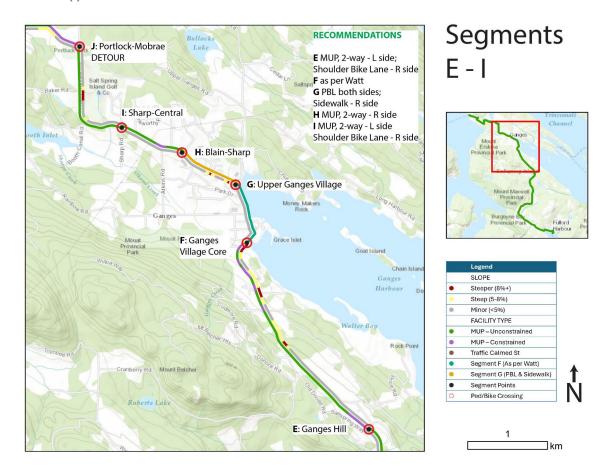

In most areas, the proposed SSIRT will involve a 2-way multi-use path on either side of the road. Through Ganges Village (Segment F), where the land use is more urbanized, the facilities will typically include segregated, unidirectional facilities on each side of the road that are physically protected from motor vehicle traffic. Exceptions will occur where the road ROW is constrained, leading to some instances where active transportation users may not be physically protected from motor vehicle traffic nor segregated in unidirectional facilities. Speed limits are lower through Ganges Village, allowing pathway users to be more comfortable travelling in close proximity to motor vehicle traffic.

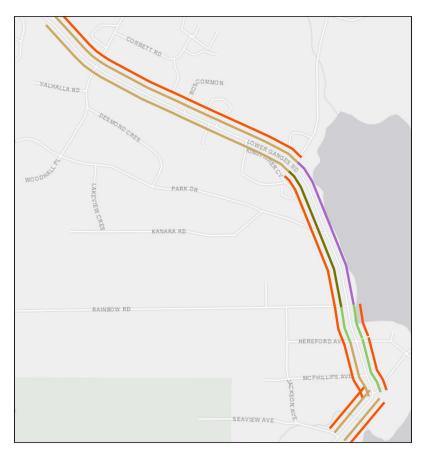
Fulford Ferry Terminal (A1), Fulford Ferry Link (A2) and Fulford Valley (B)

Segment	Constrained (m)	Unconstrained (m)	Property Impacts m² & (#) of Properties
A1	235	0	28 (2)
A2	204	818	903 (5)
В	637	2,856	2,026 (11)

Mountainside (C) and Cusheon Lake-Cranberry (D)

Segments C - D

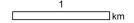

	Legend
	SLOPE
•	Steeper (8%+)
	Steep (5-8%)
0	Minor (<5%)
	FACILITY TYPE
•	MUP - Unconstrained
•	MUP - Constrained
•	Segment Points
0	Ped/Bike Crossing



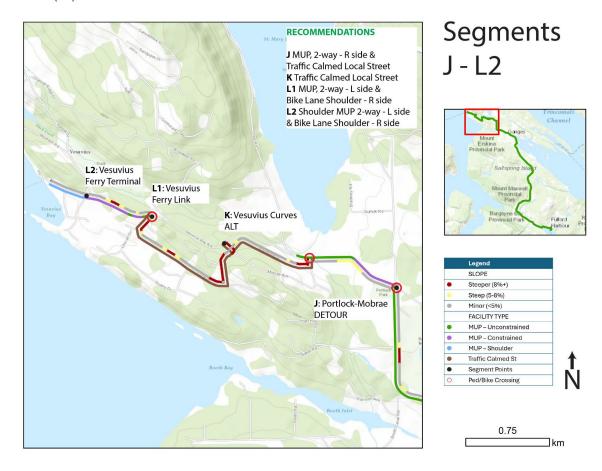
Segment	Constrained (m)	Unconstrained (m)	Property Impacts m² & (#) of Properties
C	468	2,753	2,318 (8)
D	90	2,652	1,047 (14)

Ganges Hill (E), Ganges Village Core (F), Upper Ganges Village (G), Blain-Sharp (H) and Sharp-Central (I)⁶

⁶ Appendix B shows the details concerning the active transportation facilities recommended through Ganges Village in Segments F and G.



Ganges Village Facility Types


	Legend
	FACILITY TYPE
•	MUP - Constrained
	Sidewalk
0	Protected Bike Lane
•	Buffered Bike Lane
	Bike Lane

Segment	Constrained (m)	Unconstrained (m)	Property Impacts m² & (#) of Properties
E	766	2,221	1,141 (15)
F	NA	NA	409 (12)
G	NA	NA	13 (1)
Н	125	711	1 (1)
I	0	1,432	1,066 (8)

Portlock-Mobrae Detour (J), Vesuvius Curves (K), Vesuvius Ferry Link (L1) and Vesuvius Ferry Terminal (L2)

Segment	Constrained (m)	Unconstrained (m)	Property Impacts (m² & # of Properties)
J	453	519 (Traffic Calmed St 951)	1,920 (5)
K	NA	(Traffic Calmed St 1,563)	0 (0)
L1	475	136	272 (10)
L2	340	0	0 (0)

Appendix C: Detailed Segment Evaluation Framework

Segments prioritized for early implementation have the highest scores for criteria within the categories of Projected Demand, Connectivity/Access and Safety, Support, Cost, and Conflicts.

Projected Demand

Alignment with CRD Priorities

Considers segments previously identified as priorities for implementation in the Gulf Islands Regional Trails Plan. Identified segments received a score of five (or less, depending on the proportion of a segment that fell within the high-priority area). Those outside this priority area received a score of zero.

Population Density Proxy

Measures the population density of local census tracts that are adjacent to the planned route and scaled relative to the length of each segment (Census Canada, 2021).

Active Transportation Use Proxy

Data was drawn from Census Canada 2021 (Journey to Work) to assess the percentage of people who regularly walk and cycle to work, relative to the length of the segment.

Outcomes of Projected Demand Evaluation

The following table summarizes the scores for each segment in this category. Segment H scores the highest since it lies largely within CRD's priority area for construction of a regional trail and has a relatively high population density and proportion of residents who commute using active modes.

Summary of Project Demand Scores Based on Route Segments

		PROJECTED DEMAND					
SEG CODE	SEGMENT NAME	CRD Priorities Score*	Est. Pop/km² Scaled Relative to Census Frontage %	Population Density Proxy Score*	Active Transportation Commute % / Frontage %	Active Transportation Use Proxy Score*	Total Score (/15)
A1	Fulford Ferry Terminal	0	46.9	3	11.9%	3	6
A2	Fulford Ferry Link	0	46.2	3	9.5%	1	4
В	Fulford Valley	0	36.6	1	11.0%	2	3
C	Mountainside		30.7	1	11.0%	2	3
D	Cusheon Lake- Cranberry	0	40.4	2	9.6%	1	3
E	Ganges Hill	0	40.8	2	10.2%	2	4
F	Ganges Village Core	0	115.9	5	35.5%	5	10
G	Upper Ganges Village	0	237.5	5	24.4%	5	10
Н	Blain-Sharp	4.5	237.5	5	24.4%	5	14.5
I	Sharp-Central	5	48.4	3	14.2%	4	12
J	Portlock- Mobrae DETOUR	5	41.9	2	11.8%	3	10
K	Vesuvius Curves ALT	5	35.5	2	11.9%	3	10
L1	Vesuvius Ferry Link	5	41.9	2	11.8%	3	10
L2	Vesuvius Ferry Terminal	5	46.1	3	10.2%	2	10

*CRD Priorities Scoring:

Vesuvius Bay to Atkins Road = 5 pts

Elsewhere = 0 pts

*Population Density Proxy Scoring:

100 + = 5 pts

99-50 = 4 pts

49-45 = 3 pts

44-40 = 2 pts

39-0 = 1 pt

*Active Transportation Use Proxy Scoring:

15 + = 5 pts

12+-15 = 4 pts

11+-12 = 3 pts

10+-11 = 2 pts

10-0 = 1 pt

Connectivity/Access/Safety

Connections to Key Destinations

Using data from Google Maps and OpenStreetMaps, segments were scored based on their connectivity to key destinations, including grocery stores, parks and publicly accessible rest stops.

Parallel Alternative Routes

This criterion was scored based on the availability of parallel alternate routes to accommodate active transportation users.

Connections to Transit Stops

The SSIRT will be complementary to transit as a connection between Salt Spring communities. This criterion scored segments based on the number of transit stops per kilometre along the segment.

Collisions Involving Active Transportation Users

Collisions involving active transportation users on Salt Spring occur very rarely. Yet, such collisions tend to have costly repercussions for individuals, families and society as a whole. The objective is to expedite implementation in segments where collisions involving active transportation users occur more regularly. This criterion scored segments based on the number of collisions involving active transportation users reported to ICBC between 2017 and 2022 (the last 5 years for which data is publicly available).

Percentage of a Segment with Steep Grades

This criterion scored segments based on the grade of the slope as a percentage of the length of each segment.

Connectivity/Access/Safety Summary

The following table summarizes the scores for each segment in the Connectivity/Access and Safety category. Segment D scored the highest since it has a number of important destinations, no parallel active transportation route, a relatively high number of collisions involving active transportation users, as well as some connections to transit and steeper grades.

		CONNECTIVITY/ACCESS & SAFETY					
SEG. CODE	SEG. NAME	Connections to Key Destinations Score*	Parallel Alternate Routes Score*	Connections to Transit Stops Score*	Collisions Involving Active Transportation Users Score*	% of Segment with Steep Grades Score*	Total Score (/30)
A1	Fulford Ferry Terminal	1.5	7.0	5	0	5	18.5
A2	Fulford Ferry Link	2	10.0	5	0	2	19.0
В	Fulford Valley	2	10.0	3	3	0	18.0
C	Mountainside	2.5	10.0	1	0	3	16.5
D	Cusheon Lake- Cranberry	3.5	10.0	1	5	1	20.5
E	Ganges Hill	2	8.0	0	5	4	19.0
F	Ganges Village Core	5	3.0	3	5	0	16.0
G	Upper Ganges Village	1	5.0	5	5	3	19.0
Н	Blain-Sharp	1	1.0	5	3	0	10.0
1	Sharp-Central	1	1.0	3	5	2	12.0
J	Portlock- Mobrae DETOUR	1	8.0	5	3	3	20.0
K	Vesuvius Curves ALT	1.5	5.0	3	0	5	14.5
L1	Vesuvius Ferry Link	1	10.0	0	0	2	13.0
L2	Vesuvius Ferry Terminal	2	10.0	5	0	0	17.0

*Connections to Key Destinations Scoring

No Important Destinations Available = 0 pts Highest # of destinations = 5 pts

*Parallel Alternate Routes Scoring

Welcoming Alternative Exists = 0-1 pts
Reasonable Alternative = 2-3 pts
Problematic or Circuitous Alternative = 4-5 pts
Partial Comfortable Alternative = 6-7 pts
Partial Problematic Alternative = 8-9 pts
No Real Alternative = 10 pts

*Connections to Transit Stops Scoring

2+ Stops/km = 5 pts 1 - 2 Stops/km = 3 pts >0 and <1 = 1 pts

*Collisions Involving Active Transportation Users Scoring

2+ Collisions = 5 pts 1 Collision = 3 pts 0 collisions = 0 pts

*% of Segment with Steep Grades Scoring

50% or more = 5 pts 40% = 4 pts 30% = 3 pts 20% = 2 pts 10% = 1 pts 0% to 10% = 0 pts

Community Support

Alignment with Provincial Grant Criteria

BC Provincial Active Transportation capital grants require that eligible projects be part of an approved active transportation plan. The entire SSIRT route is identified as a planned major regional active transportation route within Salt Spring's Pedestrian Cycling Master Plan.

Community Support Summary

The following table summarizes the scores for each segment in the Community Support category. All segments except J and K received the maximum score, as each segment forms part of the planned, designated active transportation route. None of Segment K and only a portion of Segment J form part of the planned, designated active transportation route. The recommended route in this Study for these segments detours off Vesuvius Bay Road and follows local streets as a means to avoid portions of Vesuvius Road that will face high capital construction costs.

Summary of Community Support Scores

		SUPPORT				
SEG. CODE	SEG. NAME	Alignment with BC Grant Criteria Score*	Total Score (/5)			
A1	Fulford Ferry Terminal	5	5			
A2	Fulford Ferry Link	5	5			
В	Fulford Valley	5	5			
C	Mountainside	5	5			
D	Cusheon Lake-Cranberry	5	5			
Е	Ganges Hill	5	5			
F	Ganges Village Core	5	5			
G	Upper Ganges Village	5	5			
Н	Blain-Sharp	5	5			
1	Sharp-Central	5	5			
J	Portlock-Mobrae DETOUR	3	3			
K	Vesuvius Curves ALT	0	0			
L1	Vesuvius Ferry Link	5	5			
L2	Vesuvius Ferry Terminal	5	5			

*Alignment With BC Grant Criteria Scoring

Entire segment is on planned route = 5 pts
Part of segment is on planned route = 3 pts
No part of segment is on planned route = 0 pts

Costs and Conflicts

Relative Cost per Kilometre

Sections are scored based on their relative construction cost per kilometre.

Property Boundary Conflict

Anticipated property conflicts occur when the path of the planned facility is anticipated to encroach on property that is outside of the road ROW. This criterion looked at the square metres of pathways that fell outside the road ROW.

Costs and Conflicts Summary

The following table summarizes the scores for each Segment in the Costs and Conflicts category. Segment K scores the highest, since it has a relatively low capital cost and does not stray outside of the road ROW. Segment E is the lowest priority in this category since it has relatively high estimated

capital costs and over approximately 1,100 square metres of active transportation facilities that fall outside of the road ROW.

Cost and Conflicts Account Summary Scores

		COST & CONFLICTS							
SEG. CODE	SEG. NAME	Cost/km Avg.	Cost/km Score*	Conflicts w/ Property Boundaries (m²)	Property Conflicts Score*	Total Score (/15)			
A1	Fulford Ferry Terminal	\$4,500,000	2.9	28	5	7.9			
A2	Fulford Ferry Link	\$4,090,000	3.6	903	3	6.6			
В	Fulford Valley	\$1,850,000	7.1	2,026	1	8.1			
C	Mountainside	\$2,360,000	6.3	2,318	1	7.3			
D	Cusheon Lake- Cranberry	\$2,810,000	5.6	1,047	2	7.6			
E	Ganges Hill	\$6,350,000	0.0	1,141	2	2.0			
F	Ganges Village Core	\$4,880,000	2.3	409	4	6.3			
G	Upper Ganges Village	\$5,490,000	1.3	13	5	6.3			
Н	Blain-Sharp	\$1,460,000	7.7	1	5	12.7			
I	Sharp-Central	\$1,270,000	8.0	1,067	2	10.0			
J	Portlock-Mobrae DETOUR	\$900,000	8.6	1920	2	10.6			
K	Vesuvius Curves ALT	\$240,000	9.6	0	5	14.6			
L1	Vesuvius Ferry Link	\$3,460,000	4.5	272	4	8.5			
L2	Vesuvius Ferry Terminal	\$3,460,000	4.5	0	5	9.5			

*Relative Cost/km Scoring

\$0 - 1 million = 10-8 pts

\$1 - 2 million = 8-7 pts

\$2 - 3 million = 6-5 pts

\$3 - 4 million = 5-4 pts

25 4 million – 5 4 pts

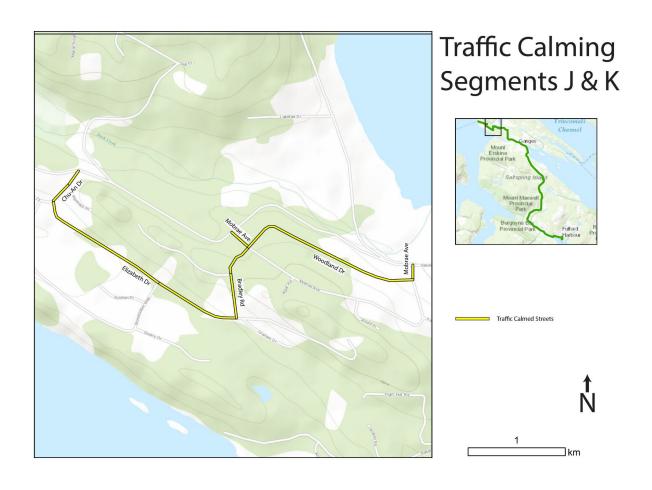
\$4 - 5 million = 3-2 pts

\$5 - 6 million = 1-0 pts

\$6+ million = 0 pts

*Property Conflicts Scoring

 $0 - 30 \text{ m}^2 = 5 \text{ pts}$


 $31 - 500 \text{ m}^2 = 4 \text{ pts}$

 $501 - 1,000 \text{ m}^2 = 3 \text{ pts}$

 $1,001 - 2,000 \text{ m}^2 = 2 \text{ pts}$

 $> 2,000 \text{ m}^2 = 1 \text{ pt}$

Appendix D: Proposed Shared Local Street Alignment Through Segments J & K

Appendix E: Trail Design Costing for a 3.0 m Paved Path

The following table provides an overview of construction cost estimates for a 3.0-metre-wide paved path across all segments. To reduce construction costs, a less expensive option was explored and is recommended through this Study.

Seg. Code	Seg. Name	Length (m)	Est. Cost	Cost/km Avg.	Prelim. Score (/5)	Rank
A1	Fulford Ferry Terminal	302	\$1,860,000	\$6,160,000	1.4	12
A2	Fulford Ferry Link	1,022	\$5,350,000	\$5,230,000	2	10
В	Fulford Valley	3,493	\$11,120,000	\$3,180,000	3.2	2
C	Mountainside	3,221	\$10,670,000	\$3,310,000	3.1	3
D	Cusheon Lake- Cranberry	2,742	\$10,730,000	\$3,910,000	2.7	4
Е	Ganges Hill	2,987	\$25,780,000	\$8,670,000	0	14
F	Ganges Village Core	805	\$3,930,000	\$4,880,000	2.2	9
G	Upper Ganges Village	795	\$4,370,000	\$5,490,000	1.8	11
Н	Blain-Sharp	836	\$1,770,000	\$2,110,000	3.8	1
I	Sharp-Central	1,432	\$6,430,000	\$4,488,000	2.4	5
J	Portlock-Mobrae DETOUR	1,724	\$11,380,000	\$6,600,000	1.2	13
K	Vesuvius Curves ALT	746	\$3,570,000	\$4,780,000	2.2	6
L1	Vesuvius Ferry Link	612	\$2,930,000	\$4,780,000	2.2	6
L2	Vesuvius Ferry Terminal	340	\$1,630,000	\$4,780,000	2.2	6
	Total:	21,755	\$101,520,000	\$4,600,000		

Salt Spring Island Regional Trail Feasibility Study

Appendix F: Funding and Partnership Considerations

To successfully implement this project, a fundraising approach focused on a diversity of sources is essential, including federal, provincial, and alternative government, and public and private funding programs available to support planning, capital development, and long-term operations. Some funding programs are identified below; additional funding opportunities may be available through the private sector, including corporate sponsorships and donations from individuals, groups, estates, and other organizations.

Capital Planning

Integrating active transportation route construction into capital planning is the most effective way to realize the project vision and ensure alignment with broader transportation, climate, land use, and public safety strategies.

Municipal Funding Tools—Land Development Policies

In British Columbia, municipal and regional governments can implement funding tools like Development Cost Charges and Community Amenity Contributions to ensure that new developments contribute to the cost of infrastructure and amenities. By adopting bylaws and negotiating with developers, local governments can direct these funds towards active transportation projects such as sidewalks, bike lanes, and multi-use paths. These tools allow local governments to align growth with community goals, reduce reliance on general taxation, and support healthier and more connected communities.

Provincial Government

The **B.C.** Active Transportation Infrastructure Grant, administered by MoTT, offers up to \$500,000 per project to cost-share new walking, cycling, and trail infrastructure, with funding levels based on community size and type. Projects that improve safety, connectivity, and inclusivity—and have detailed designs and strong partnerships—are more likely to be funded. The 2025/2026 intake of the BC Active Transportation Infrastructure Grant Program has been paused pending a review (expected fall 2025).

The **Rural Economic Diversification and Infrastructure Program**, led by the Ministry of Jobs, Economic Development and Innovation, supports rural infrastructure and clean economy projects, with future funding expected to increase beyond its initial three-year term.

ICBC's **Road Improvement Program** provides funding for pedestrian and cycling infrastructure that enhances road safety and reduces crash-related claims.

Federal Government

The Government of Canada offers several funding programs to support municipal infrastructure, typically covering up to one-third of project costs. The **Active Transportation Fund** provides up to

\$50 million per project for planning and capital initiatives that improve walking, cycling and trail infrastructure, with contribution rates between 60 and 100% depending on location and recipient type. Though current intakes are closed, future funding is expected to be announced in the future, and the federal government has since allocated \$3 billion annually starting in 2026-27 under the Canada Public Transit Fund.

The **Federation of Canadian Municipalities** also supports climate-resilient infrastructure through the **Green Municipal Fund**, offering grants of up to **\$1 million** for adaptation and net-zero projects, covering 50 to 80% of eligible costs.

Appendix G: Key Implementation Tasks

Key Implementation Tasks

The implementation of the active transportation route involves a series of coordinated tasks across all phases of the project—from early planning to long-term operation. These tasks are designed to ensure the route is thoughtfully designed, legally compliant, well-funded and effectively maintained. Each segment of the active transportation route will undergo its own implementation phases and associated tasks. Roles and responsibilities for executing these tasks may vary by segment and will be defined based on factors such as jurisdiction, available resources and technical requirements.

Planning & Design Phase

- Develop a Memorandum of Understanding to establish shared goals and collaboration.
- Initiate capital and operational fundraising efforts.
- Conduct public and stakeholder engagement during conceptual and detailed design.
- Prepare conceptual and detailed design plans.
- Begin property acquisition processes, including early engagement with landowners.
- Carry out archaeological assessments to identify and mitigate potential impacts.
- Submit applications for Agricultural Land Commission approvals.
- Apply for Licences of Occupation for necessary land use.
- Draft operations and maintenance agreements based on infrastructure needs.
- Establish transit and transportation service agreements.
- Conduct geological assessments to inform design and construction.

Construction Phase

- Issue Requests for Proposals for construction services.
- Oversee construction activities to ensure quality and compliance.

Operations Phase

- Implement operations and maintenance protocols, either in-house or via contractors.
- Launch monitoring and evaluation processes to track usage trends and safety, starting with baseline data collection.